Spectral and Wavelet-based Feature Selection with Particle Swarm Optimization for Hyperspectral Classification
نویسنده
چکیده
Spectral band selection is a fundamental problem in hyperspectral classification. This paper addresses the problem of band selection for hyperspectral remote sensing image and SVM parameter optimization. First, we propose an evolutionary classification system based on particle swarm optimization (PSO) to improve the generalization performance of the SVM classifier. For this purpose, we have optimized the SVM classifier design by searching for the best value of the parameters that tune its discriminant function, and upstream by looking for the best subset of features that feed the classifier. Second, for making use of wavelet signal feature of pixels of hyperspectral image,we investigate the performance of the selected wavelet features based on wavelet approximate coefficients at the third level.The PSO algorithm is performed to optimize spectral feature and wavelet-based approximate coefficients to select the best discriminant features for hyperspectral remote imagery.The experiments are conducted on the basis of AVIRIS 92AV3C dataset. The obtained results clearly confirm the superiority of the SVM approach as compared to traditional classifiers, and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. Index Terms — support vector machine (SVM) , Particle Swarm Optimization( PSO) ,optimization , Feature Selection,Wavelet Decompostion
منابع مشابه
Particle Swarm Optimization (PSO) based approach for Classification of Remote Sensing Images
Dimensionality reduction is a major task in remote sensing images. Feature selection is applied for performing dimensionality reduction. It selects the spectral features(i.e. Bands) and find a feature subset that preserves the semantics of the hyperspectral image. Based on particle swarm optimization (PSO), this paper proposes multi-objective functions for selecting the spectral feature subsets...
متن کاملOptimum Band Selection of Hyperspectral Imagery Based on Particle Swarm Optimization
Nowadays, hyper-spectral remote sensing imaging systems are able to acquire several hundreds of spectral bands. Increasing spectral bands provide the more information for land cover and separate similarity classes, so classification accuracy potentially could increase. Nevertheless classification of hyperspectral imagery by conventional classifiers suffers from Hughes phenomenon. One of the sol...
متن کاملA Particle Swarm Optimization-based Approach for Hyperspectral Band Selection
In this paper, a feature selection algorithm based on particle swarm optimization for processing remotely acquired hyperspectral data is presented. Since particle swarm optimization was originally developed to search only continuous spaces, it could not deal with the problem of spectral band selection directly. We propose a method utilizing two swarms of particles in order to optimize simultane...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملSpectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms
Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JSW
دوره 6 شماره
صفحات -
تاریخ انتشار 2011